Best Institute for Data Science and Data Analytics Course in Ahmedabad

🎓 Data Analytics Course Curriculum (Module-Wise)

📘 Module 1: Introduction to Data Analytics

Topics Covered:

  • What is Data Analytics?
  • Types of Data Analytics:
    • Descriptive
    • Diagnostic
    • Predictive
    • Prescriptive
  • Data Analytics vs Data Science vs Business Intelligence
  • Data Analytics Lifecycle
  • Real-world applications and use cases

🛠 Module 2: Tools for Data Analytics

Tools Introduced:

  • Excel / Google Sheets
  • SQL (Structured Query Language)
  • Power BI / Tableau
  • Python (Pandas, NumPy, Matplotlib)
  • Jupyter Notebook

📊 Module 3: Excel for Data Analytics

Topics:

  • Data cleaning and formatting
  • Formulas and functions
    • VLOOKUP, HLOOKUP, INDEX/MATCH
    • IF, AND, OR, COUNTIF, SUMIF
  • Pivot Tables and Pivot Charts
  • What-If Analysis and Scenario Manager
  • Basic dashboards

Example:
Use Excel to analyse monthly sales data and generate a summary dashboard using pivot charts.

🗃 Module 4: SQL for Data Analytics

Topics:

  • Basics of Relational Databases
  • SQL syntax and queries:
    • SELECT, WHERE, ORDER BY, GROUP BY, HAVING
    • JOINs (INNER, LEFT, RIGHT, FULL)
    • Aggregations (SUM, AVG, COUNT)
    • Subqueries and CTEs
  • Creating views
  • Writing queries for business insights

Example:
Write a SQL query to find the top 5 products with the highest sales in the last 6 months.

📈 Module 5: Data Visualization

Topics:

  • Principles of effective data visualization
  • Types of charts: bar, line, pie, scatter, histogram, box plot
  • Data storytelling techniques
  • Creating dashboards using:
    • Power BI
    • Tableau

Example:
Build a dashboard in Power BI that shows KPIs like sales, profit, and customer count segmented by region.

🐍 Module 6: Python for Data Analytics

Topics:

  • Python Basics (variables, loops, functions)
  • NumPy for numerical operations
  • Pandas for data manipulation:
    • Reading CSV/Excel files
    • Filtering, grouping, merging data
  • Data visualization:
    • Matplotlib
    • Seaborn

Example:
Use Pandas to clean customer transaction data and Seaborn to visualize spending patterns.

🧼 Module 7: Data Cleaning & Preparation

Topics:

  • Handling missing values
  • Removing duplicates
  • Data type conversions
  • Detecting and treating outliers
  • Normalization & standardization (basic intro)

Tools: Excel, Pandas (Python), Power Query (Power BI)

🧠 Module 8: Basic Statistical Analysis

Topics:

  • Mean, Median, Mode
  • Variance and Standard Deviation
  • Correlation and Covariance
  • Frequency distribution and histograms
  • Using statistics for insights

Example:
Use descriptive statistics to analyse customer age distribution in Python or Excel.

🔍 Module 9: Business Problem Solving with Analytics

Topics:

  • Framing a business problem
  • Choosing the right data and metrics
  • Defining KPIs
  • Communicating insights effectively
  • Creating a business report or dashboard

Example:
A company wants to reduce customer churn. Use available customer data to analyse churn drivers and present actionable insights.

🚀 Module 10: Capstone Project

Project Ideas:

  • Sales analysis and forecasting dashboard
  • Customer segmentation based on behaviour
  • Website traffic analysis
  • Marketing campaign ROI analysis
  • HR attrition and performance insights

Deliverables:

  • Data cleaning & analysis
  • Visualization/dashboard
  • Insightful report or presentation

✅ Optional Add-on Modules:

🔁 Time Series Analysis (Basics)

  • Trends, seasonality, moving averages
  • Simple forecasting techniques

🌐 Web Data & APIs

  • Introduction to APIs
  • Pulling data from web (optional with Python)

📦 Big Data & Cloud Basics

  • Overview of BigQuery, Snowflake, or AWS S3

Python Programming Course in Ahmedabad

Our Courses


 

Get Call Back/ Admission Inquiry

Send us your Inquiry
Select Course / कोर्स का चयन करें